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Abstract-The problem of steady-state thermal constriction resistance is modeled by means of various 
spatially periodic arrangements of circular disks (contact regions) on the surface of a semi-infinite solid. 
Three cases of disk boundary condition are considered : uniform flux, the ‘equivalent isothermal flux’, and 
the condition of isothermal disks. Analytical expressions for the resistance are derived as power series of 
JC”‘, where K is the fraction of the solid surface occupied by the disks. The behavior of the resistance is 

then studied as a function of disk boundary condition, spatial arrangement and concentration. 

1. INTRODUCTION 

IT IS WELL known that thermal contact resistance 
arises from the imperfect contact of two solid surfaces. 
The surface roughness brings about the situation in 
which the solids make contact with each other over 
discrete regions of the interface, leaving air gaps in 
the remainder. As a result, heat flowing across the 
interface is channelled through the contacting regions, 

the air gaps being practically impervious to heat flow. 
This causes a constriction in the heat flow near the 
interface and, therefore, there exists a resistance to the 
flow. This resistance is commonly called the thermal 
constriction resistance. The subject has been reviewed 
extensively in recent years, and excellent literature 
surveys are available [l-3]. 

For two semi-infinite solids in steady-state thermal 
contact, it is not difficult to show that the contacting 
regions have a uniform temperature. The problem 
thus reduces to that of one semi-infinite solid with 
isothermal discrete regions on the plane surface while 
the rest of the surface is considered insulated. The 
classical model is that of one circular contact on a 
semi-infinite solid, the solution to which is well known 
[4]. In the case of multiple contact regions, however, 

the problem becomes very complicated due to the 
multiply connected mixed Dirichlet and Neumann 
conditions at the solid surface. To overcome the 

difficulty of mixed boundary conditions, a number of 
investigators have replaced the isothermal condition 
with some prescribed heat fluxes. Beck [5], for 
example, treated the case of a square array of circular 
regions heated by a uniform flux. Another approach 
to the multiple contact problem is with the ‘cylindrical 

cell’ model. This model assumes that each contact 

region can be isolated with an adiabatic coaxial cylin- 
drical surface within the solid. This method admits an 
axially symmetric solution, and has been quite popu- 
lar [&9]. 

In this paper, we consider the steady-state con- 
duction in a semi-infinite solid with identical disks 
(circular contact regions) distributed periodically 
throughout the surface. Three cases of disk boundary 
condition will be considered, the rest of the solid sur- 
face being insulated : uniform flux ; ‘equivalent iso- 
thermal flux’, which is the heat flux condition for one 
isothermal disk on a semi-infinite solid ; and uniform 
temperature. Among these approximations of the 

physical problem, the case of isothermal contacts 
probably gives the best description. It is also the most 
difficult of these to solve. Of course, it is understood 
that there are some situations requiring the uniform 
flux condition at the contacting regions. Of main inter- 
est in this study will be the analytical derivation of the 
dimensionless resistance II/ defined by 

(1) 

where R is the radius of the disks, k is the solid thermal 
conductivity, AT is the difference between the average 
temperature of the disks and the average temperature 
of the entire surface, and Q is the rate of heat flow 
into the solid through one disk. Then, the behavior 
of $ will be studied as a function of disk boundary 
condition and disk spatial distribution. Three cases of 
disk arrangement will be considered: square array, 
hexagonal array, and triangular array. 
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NOMENCLATURE 

h distance between the reference disk Greek symbols 
and the neighboring disk under (S distance between a disk and its closest 
consideration neighbor 

fr, hi.h, H, array sums, equations @I), (49). 0 equation (45) 
(24) and (2.5) ii area fraction of contact regions 

H?? H:6 array sums, equations (23) and (48) A equation (60) 
J,, Bessel function of the first kind of $ dimensionless constriction resistance 

order II R equation (58). 
k thermal conductivity 
N positive integer 
p,* Legendre polynomial of degree $2 Subscripts 
9 average surface heat flux c circular cell 
qo constant heat flux h hexagonal array 
YF. equivalent isothermal flux S square array 
Yhr qs heat flux distributions over isothermal t triangular array. 

disks arranged in a hexagonal and 
a square array, respectively 

Q total rate of heat Row across one Superscripts 
contact area eif pertaining to disks with the equivalent 

R disk radius isothermal flux 
s,, si,4, S, array sums, equations (IO), (47), i pertaining to isothermal disks 

(15) and (16) uf pertaining to disks with a uniform 
s,*, s,T, array sums, equations (I 8) and (46) RUX. 

ii, T,, ‘T,” array sums, equations (28) and 
(30).(32) Coordinate systems 

T temperature (.X, )‘. Z) rectangular coordinates 
F average temperature of contact (p, Cp, 2) cylindrical coordinates with the origin 

regions 
P 

at the center of any one disk under 
average teln~~ature of solid surface consideration and 4 measured from 

fk average temperature of the reference the x-axis (Figs. 2-4) 
disk, A (F, cb. Z) cylindrical coordinates, origin at the 

T AH temperature rise at disk A due to center of the reference disk 
disk B (Y? 0) polar coordinates with H measured 

RW ThH averaged over disk A from the line joining the reference 
AT difference between average contact disk and the neighboring disk under 

and average surface temperatures. consideration (Fig. 1). 

-- 

Situations involving spatially periodic contact areas 
arise in special cases such as those of machined sur- 
faces. As discussed by Negus at rrf. [IO], periodicity 
along with anisotropy arose in such situations. In 

general, the contact regions have random shape, size, 
and distribution. This fully random problem, how- 
ever, is so difficult that an analytical solution does 
not appear to be feasible. For the less general problem 
of randomly placed circular contacts of the same size, 
an approximate solution can be worked out using 
Batchelor’s [I I] method. However, the solution is 
valid only for dilute contact concentrations. On the 
other hand, analytical solutions valid for a wide range 
of contact fractions can be obtained onty when the 
contact regions are periodically distributed. In the 
interest of demonstrating the effects of disk arrange- 
ment for non-dilute cases, we have chosen the model 
of regularly arranged contact areas. As mentioned 
earlier, we consider three types of periodic array. 

In view of the periodicity of the disk arrangement. 
we can reduce the problem to that of a circular contact 
region on top of a laterally insulated semi-inanity 
prism of square, hexagonal, or triangular cross- 
section. Negus and Yovanovich [12] treated the case 
of a circular contact on a square prism, and calculated 
the constriction resistance numerically. Analytical 
expressions for the constriction resistance were 
obtained by Sadhaf 1131 for an elLiptica contact on a 
square prism by a double Fourier series eigenfunction 
expansion ; these expressions, however, consisted of 
infinite double series of Bessel functions and con- 
verged very slowly for small contact sizes. In an aggre- 
gate study of various Fourier-type series solutions, 
Negus et al. [14] examined three types of contact 
geometries consisting of a circular contact on square 
and circular prisms and a square contact on a square 
prism, all with the uniform flux condition on the con- 
tact area. The Fourier method cannot be extended to 
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cover hexagonal or triangular prisms since it cannot 
satisfy the adiabatic condition at the lateral surfaces. 
Therefore, this approach of isolating each contact 
region with a prism will not be considered in this 
paper. Instead, we wili derive the expression for the 
constriction resistance by examining the thermal inter- 
actions of the contact regions. The approach used 
here is an extension of a powerful method first applied 
by Beck [5] to treat the problem of a square array of 
disks heated by a uniform flux. Beck’s method has 
one advantage that for a given type of array, we need 
to calculate a number of lattice sums only once since 
they are readily applicable to different cases of disk 
boundary condition. Furthermore, for a given disk 
boundary condition, the solution techniques for 
different array types are essentially the same. 

2. CASE 1: UNIFORM FLUX 

We begin the analysis of a periodic array of identical 
disks heated by a uniform flux q. with that of a single 
disk on the surface of a semi-infinite solid. By sep- 
aration of variables, the steady-state temperature in 
the solid is obtained as 

T(p,z) = fy s 0m f J, (z)J,(rp/R) e-rziR dz (2) 

where J, and J, are the Bessel function of the first kind 
of order zero and one, respectively. The cylindrical 
coordinate system (p, Cp, z) has its origin at the center 
of the disk with the solid being described by 
0 < p -C 03, 0 < z < co. The temperature T given by 
(2) vanishes as z -+ co. At the solid surface, there is a 
uniform heat flux q. crossing the disk into the solid 
while the region external to the disk is insulated. From 
equation (2), we obtain the surface temperature as 

q,R “1 
T(p,z=O)=-- 

k s D _t JI (+&V/R) dz. (3) 

Averaging (3) over the disk yields 

The temperature distribution of the solid surface out- 
side the disk will be needed in the analysis later. Using 
a table of integrals [IS], we expand the right hand side 
of (3) and obtain 

Next, we consider two disks of radius R on the The single sum in (10) corresponds to the summation 

surface of the solid as shown in Fig. 1. Let each of 
the disks be heated by a uniform flux qo. Then, the 
temperature distribution TAB over disk A contributed 
by disk B is equal to the right hand side of equation 
(5). To calculate the average of TAB over disk A, ?&, 
we first expand TAB in terms of the cylindrical polar 
coordinates (I, 0). This expansion can be accom- 
plished by utilizing the Legendre polynomial identity 

and its derivatives 

(7) 

where I = 3,5,7,. . . . After a lot of algebra, we obtain 

2.1. Sqztare array oj’ disks 
Having completed the analysis for two disks, we 

can now proceed to analyze the case of an infinite 
square array of disks. To do this, we first consider a 
square of sides (2N+ 1)6 on the surface of a semi- 
infinite solid and the (2N-t 1)’ identical disks inside 
the square (Fig. 2) N being a large positive integer. 
The surface is insulated, except at the disks, each of 
which is heated by a uniform flux qc. The disk at the 
center of the square, A, will be termed the reference 
disk. Later, the limit of N + co will be taken, thus 
recovering the infinite square array of disks. 

Summing the right hand side of equation (8) over 
each of the disks inside the square, A being excluded, 
and combining the result with (4), we obtain the aver- 
age temperature of the reference disk as 
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p = (T’ + b* - 2br cm B)“* 

FIG. 1. Two circular disks of radius R on the surface of a semi-infinite solid 

(2N + 1)s 
I 

, 6 l 

P 

0 2 

_ 

FIG. 2. Circular disks of radius R arranged in a square array 
on the surface of a semi-infinite solid. The disk at the center, 
labeled A, is the reference disk. Also shown are a typical disk 

and the unit celi associated with it. 

over all the disks on the axes and the diagonals of the 
square, excluding the reference disk, while the double 
sums represent those located off the axes or diagonals. 
As N--f co, s,(N) becomes unbounded, indicating 
that with an infinite number of disks (heat sources) 
on the surface, the conditions of finite surface and 
zero far-field temperatures are incompatible with each 
other. Effectively, there is a uniform heat flux in the 
solid far away from its surface. Beck [5] handled this 
probIem by introducing time dependence into his 
analysis. However, this is not necessary if we tolerate 
temperatures being finite at the solid surface while 
going linearly to infinity in the far field, which is a 
fairly common practice. 

To overcome the difficulty of infinite average tem- 
perature of the reference disk, we take the difference 
between this average temperature and that of the 
entire solid surface. To calculate this temperature 
difference, we first suppose that the region of the 
surface inside the square was heated by the uniform 
flux 4 given by 

the far-field temperature ofthe solid being zero. Then. 
the temperature at the center of the square would be 

U61 

;i;= 
2 6ij 
n K (2N+ I) In tan ‘8” 

= 2!!J R 
!! 

37c 
ic (,j (2N+I)lntan *. (12) 

Let 

(13) 

Then, substituting (9) and (12) into (I 3). and letting 
N -+ XI, we obtain 

175 R 
+ 7024 & 

i 6 

where 

S, = ,Ji,m, 
1 

s,(N) - (8Nl-4) In tan 

(Ihf 

By numerical evaluation, it is found that S, is finite 
and is given by S, = -3.90026; the remaining sums 
are also evaluated numerically: S, = 9.03362, S, = 
5.09026. S, = 4.423 12, S9 = 4.19 127. Thus, AT given 
by (14) is finite. 

With hJ -+ as, we have thus recovered an infinite 
number of disks arranged in a square array. Further- 
more, AT given by (14) becomes the difference 
between the average temperature of any disk and that 
of the entire solid surface. Substituting the rate of heat 
flow across a disk, Q = nR ‘ye and AT into (I), we 
obtain the dimensionless resistance as 
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where 

(18) 

and K = nR ‘/S’ is the area fraction of the solid surface 
occupied by the disks. Substituting the numerical 
values of the various S, into (17) then yields 

$s”’ = 1.08076 - 1.4009~ “* + 0.25820rc3’* 

+0.043417K5’~+0.017513Jc7’~ 

+0.0097061~~~~+0(~“~~). (19) 

2.2. Hexagonal array of disks 
For an infinite hexagonal array of disks on the 

surface of a semi-infinite solid, the analysis is similar 
to that for a square array. Consider first a large hexa- 
gon of sides (N+ l/2)6 on the surface and the 
[3N(N+ 1) + l] identical disks of radius R inside the 
hexagon, as shown in Fig. 3. The surface, except at 
the disks, is insulated. The disk at the center of the 
hexagon, A, is the reference disk. Later, we will take 
the limit of N -+ co to recover the infinite hexagonal 
array. 

With each of the disks inside the hexagon heated 
by a uniform flux q,,, the average temperature of the 
reference disk is given by 

where 

(21) 

The single sum in (21) corresponds to the summation 
of (8) over all the disks located on the diagonals of 
the hexagon, the reference disk being excluded, while 
the double sums represent those located off the diag- 
onals. Like s,(N), h,(N) becomes infinite as N + 00, 
and the problem of infinite FA can be taken care of in 
a way similar to that of a square array. 

Thus, following the same procedure employed in 
the analysis of a square array, we obtain the con- 
striction resistance for an infinite hexagonal array of 
disks as 

FIG. 3. Circular disks of radius R arranged in a hexagonal 
array on the surface of a semi-infinite solid. The disk at the 
center of the hexagon, labeled A, is the reference disk. A 

typical disk and its associated unit cell are also shown. 

175 
---H~K~‘~+ 

5145 

+ 256~ 
~$f;K9'*+O(~"'*) (22) 

where 

(23) 

H, = ,liFa[h,(N)-(6N+3)In3] (24) 

H, = Jim, hi(N), i = 3,5,. (25) 

and K = 2~R~/6~J3 is the area fraction of the 
disks. Then, substituting the numerical values of 
H, = -4.21342, H, = 11.0342, H, = 6.76190, H7 = 
6.19524, and H, = 6.05695 into (22) results in 

$tf = 1.08076- 1.4083~“~ 

+0.25417~~‘~ f0.040254~~” t0.014827~~‘~ 

+0.0073425~~‘~ + O(K’ I”). (26) 

2.3. Triangular array of disks 
The analysis for an infinite triangular array of disks 

on the surface of a semi-infinite solid is similar to the 
previous ones. First, we consider a large equilateral 
triangle of sides ,/3(3N+ I)6 on the surface and the 
(9N2+6N+ 1) identical disks of radius R inside the 
triangle, as shown in Fig. 4. The surface, except at 
the disks, is insulated. The disk at the center of the 
hexagon, A, is the reference disk. Both the large tri- 
angle and the unit cell associated with the reference 
disk have the same orientation. To recover the infinite 
triangular array, we take the limit of N + co. 

With a uniform flux of qO applied to each of the 
disks inside the triangle, the average temperature of 
the reference disk takes the form 
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FIG. 4. Circular disks of radius R arranged in a triangular 
array on the surface of a semi-infinite solid. The reference 
disk, A, is located at the center of the triangle. Also shown 

are a typical disk and its associated unit cell. 

where 

The single sum in (2X) corresponds to summing cqua- 
tion (8) over each of the disks located on the segments 
joining the center and the vertices of the triangle, while 
the double sums correspond to the summation over 
the disks located off these segments. Again, t,(N) 
becomes unbounded when IV ---* ,-/L. 

After a littlc bit of algebra. we obtain the con- 
striction resistance for an infinite triangular array of 

disks as 

where 

T, = li_f^, 
I. 

r,(N)- 4(3N+1)Intan:; 
J3 

(31) 

T, = Jer t,(N). i = 3.5.. (32) 

Here. the area fraction of the solid surface occu- 
pied by the disks is given by ti =47rR’.‘36’,‘3. Sub- 
stituting the numerical vdlucs of T, = -3.32302, 
7’; = 6.57885. T, = 3.597X4. T- = 3.163X6. and P, = 
3.05006 into (29) then yields 

,k;” zz I .0X076 - I .3603/i ’ ’ + 0.2784 I K- : ’ 

+O.O59022K-’ J f0.03 I29Xti: J 

+O.O22925ti” - +O(ti’ ’ “). (33) 

3. CASE 2: EQUIVALENT ISOTHERMAL FLUX 

Consider a semi-infinite solid heated by the equi- 
valent isothermal flux 

(34) 

over a circular region of radius R on the surface, the 
region external to the disk being insulated. Then, with 
the far-field temperature of the solid held at zero, the 
steady-state surface temperature is given by 

ifp< R 

T(p.2 = 0) = !35) 

if 0 > R. 

From (35). it is seen that the equivalent isothermal 
flux can be used to replace the condition of uniform 
temperature of an array of isothermal disks, provided 
the disks are sufficiently far apart. In fact, qE is the 
leading-order heat flux in the analysis of an array of 
isothermal disks: we will discuss this in greater detail 
in the next section. Expanding the factor of sin '(R! 
p) in equation (35), we obtain 

Equation (36) is the counterpart of (5). Thus. fol- 
lowing the same procedure employed in the last 
section, we obtain the constriction resistance for an 
infinite square array of disks as 

= I - 1.4009~‘~‘+0.30123ti’ ’ +0,057310K’ ’ 

+0.025554~‘~+0.015403ti” ‘+O(ti” ‘). (3X) 

For a hexagonal array of disks, the resistance is given 

by 



Thermal constriction resistance 1539 

= 1- 1.40831~‘!~ +0,29654~3~z~0.053136~5~2 

+0.021635~~‘~+0.011652~~‘~ + O(~C”‘~) (40) 

and for a triangular array 

= l- 1.3603~“~+0.32481~~‘~+0.0779091c~’~ 

+0.045670~7~2 +0.036380~‘12+ O(IC’ r/*). (42) 

4. CASE 3: ISOTHERMAL CONDlTlON 

The problem of an array of isothermal disks on the 
otherwise insulated surface of a semi-infinite solid is 
very complicated due to the multiply connected mixed 
boundary conditions. However, Tio [1;1 has shown 
that the isothermal condition of the disks can be 
replaced with a series of heat fluxes. For a square 
array and a hexagonal array, the leading terms of the 
series are, respectively 

rfS = q@- v2 

_!!$9@- ‘:2-2401i2f80312)SfK5iZ 

+O(Ky (43) 

and 

qh = q&J-- ‘rJ 

- g (9@- ‘i2 -240 j/z + 8@3/2)~$5/2 

where 

-~(~3~@-‘~2-4fjO@“2 

+ 32003’2 -480f’2)Hgk-7’2 

4&l Pb _ -_.. a 
0 

x W ‘I2 cos 6#dlS 6~7’2 

f O(P) 

si,4(N) = (4-2(4+/z) g f 

“= t 

N-l N 

hi,d(N) = 6 5 i 
n= 1 

N-l N 

2 (m2-mn+n2)3 1 ’ 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

The coordinate system (p,&) has its origin at the 
center of the disk to which qs or q,, is apphed. The 
orientation of the coordinate axes is shown in Figs. 2 
and 3. Application of qs or qh as given above to each 
of the disks in the respective array results in disk 
temperature uniform up to O(K’~~). In both (43) and 
(44), the leading-order term is simply the equivalent 
isotherma flux, which has been shown [ 171 to approxi- 
mate the isothermal condition with non-uniformity in 
disk temperature occurring as early as O(rc”*). 

Using the heat fluxes given above, and following 
the same procedure utilized in the previous sections, 
we can then derive the expressions for the constriction 
resistance, For a square array, the resistance is given 

by 

I& = l+$P+;SfK3~2+ $S:K5/* 
4 10 -- 

45x2 
s;y$W + _ 5~$~712 + . . . 

7Tc (50) 

= 1 - 1.4009i~“~ +0.34427~“~ +0.074098# 

-~.~237~4K6’2+~.~36~98~7’2+~~~ (51) 

while the resistance of a hexagonal array is 
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= 1 -l.4083ti'~2+0.33890~3~2+0.068701tiT~2 

-0.022971K”~‘+0.030984K7’+~~~. (53) 

It should be noted that (50) and (52) consist of the 
first six terms of the complete expansion of the exact 
resistance for the case of truly isothermal disks. There- 
fore, $ as given by (50) and (52) corresponds to disks 
uniform in temperature up to O(ti”l). In principle, 
the approximation can be improved by carrying addi- 
tional terms (of higher order) in (50) and (52). the new 
expressions corresponding to an even higher order of 
uniformity in disk temperature. However, the heat 
fluxes as given in (43) and (44) will be inadequate, 
since the contributions from the fluxes of O(K*“) and 
higher must then be included in (50) and (52). 

5. DISCUSSION 

We have derived analytical expressions of the con- 
striction resistance for different disk boundary con- 
ditions and disk arrangements. In these expressions, 
the leading term depends only on the disk boundary 
condition while its first-order perturbation is a func- 

tion of disk arrangement only (for a given type of 
array and any one of the three disk boundary con- 
ditions considered here, the coefficients of K”’ are 
identical). However, perturbations of higher order 

(Kc*> i > 3) are functions of both the disk boundary 
condition and arrangement. Nevertheless, each term 
can be considered as a product of two factors, each 
of which depends on either the disk boundary con- 
dition or disk arrangement only. 

Since the expressions for the constriction resistance 
involve an infinite series, we need to check if the 
number of terms we have obtained for each series is 

sufficient to give accurate results. For K = 0.6. which 
corresponds to the case of nearly touching neigh- 
boring disks in a triangular array, it can be seen from 
equation (33) that the contribution from the O(ti’ I”) 
term is less than 0.8% of the resistance calculated 
using the first six terms of the series. For (42), (19). 
(38), (26) and (40), the corresponding figures are 1.7. 
0.5, 1.3,0.4, and 1.1%. respectively. Thus, for K d 0.6, 
the six formulas are adequate. In fact, we can even go 
up to K = 0.7 for a square array or a hexagonal array 
of disks with uniform flux; in this case, the con- 
tribution from the O(K”“) term is less than 1.7 
and 1.5% for a square array and a hexagonal array, 

respectively. 
While each term of O(Ki ‘) or higher in the series 

in the resistance formulas is positive for cases of uni- 
form flux and equivalent isothermal flux, the resist- 
ance formulas for isothermal disks. equations (51) 
and (53), consist of positive and negative terms. 

Therefore, we can expect that they converge faster. At 
K = 0.6, the difference between using the first foul 
terms and the first six terms of (51) is less than I, 1% : 
for (53), the difference is less than 0.3%. At K = 0.7. 
the corresponding figures are 3.9 and 2.1%. Thus. 
for practical purposes, formulas (51) and (53) are 
adequate. 

The constriction resistance of a square array of 
disks has been calculated by a few investigators. For 
disks heated by a uniform flux or the equivalent iso- 
thermal flux, Negus and Yovanovich [12] obtained 
numerical correlations which, adjusted to the notation 
of the present study, take the forms of 

$:” = 1.08076- 1.40043ti’~‘+O.26162K’ ’ 

+0.0151K”+0.090639K’7 (54) 

$:‘I = 1.00000-1.40079K’~~+0.30153K~” 

+O.O4966K’ ‘+O.O6447K’ ‘. (55) 

For K < 0.6, equations (54) and (55) agree with the 
respective formulas derived in this study, which pre- 
dict lower values of resistance, to within 3.9%. An 
analytical expression for the case of uniform flux was 
derived by Beck [5] 

I&‘= 1.080759-1.40087K’ ‘+0.12910~~.‘. (56) 

While the coefficient of til’l in (56) is only half of that 
in (19), a formal treatment to 0(K3”) would yield the 
latter result. As stated before, the expressions for the 
resistance were also derived by Sadhal [13] for cases 
of uniform flux and the equivalent isothermal flux for 
the square prism. The solution for the uniform flux 
case was later used by Negus el nl. [14]. These 
expressions, however, involve infinite double series of 
Bessel functions and are more complicated than the 
formulas derived in this study. For K”’ = 0.1,0.2.0.3, 

0.4 and 0.5, the values of &” and $:‘I were evaluated 
to four-digit accuracy, and agree exactly with the 
respective formulas derived in this paper. It seems that 
no other works of a hexagonal or a triangular array 
of disks exist in the literature, although an inves- 
tigation of a multiply connected contact region with 
a hexagonal array of circular gaps (regions of no 
contact) has been carried out 1181. In what follows, 
the results are those obtained in this study, unless 

stated otherwise. 
Figure 5 shows the resistance of a hexagonal array 

of disks for three cases of disk boundary condition : 
uniform flux, uniform temperature, and the equi- 
valent isothermal flux. For a square array, the same 
feature is also observed, i.e. the resistance of iso- 
thermal disks is smaller than that of disks with uni- 
form flux but is larger than that ofdisks heated by the 
equivalent isothermal flux. From Fig. 5, we see that 
the uniform-flux condition is not a good approxi- 
mation to the disk boundary condition of uniform 
temperature. While the equivalent isothermal flux and 
the isothermal condition predict nearly the same 
resistance for small K, the relative difference can be 
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FIG. 5. Resistance Jl,, of a hexagonal array of disks for three cases of boundary condition-uniform flux, 
uniform temperature, and equivalent isothermal flux. 

quite significant when K increases. In particular, at 
IC = 0.6, the quantity (J/i - ll/~‘)/t& is about 23% ; for 
a square array at K = 0.6, (& - $:i’)/& is about 21%. 
Thus, the choice of boundary conditions plays a very 
important role in the prediction of the constriction 
resistance, especially when the area fraction of contact 
is large. 

It is interesting to see how the arrangement of disks 
affects the constriction resistance. In Fig. 6, we plot 
the resistance $ of disks with uniform flux for the three 
types of array considered in this study. As expected, 
the resistance decreases as the unit cells of the array 
change from a triangle to a square, and to a hexagon, 
K being kept constant. In other words, the closer the 
unit cells come to full lateral isotropy (circular cell), 
the lower the resistance will be. This point is confirmed 

*” 

by the fact that the resistance for a disk on a laterally 
insulated semi-infinite cylinder assumes the smallest 
values. Furthermore, compared to the correlation for 
the cylindrical resistance obtained by Negus and Yov- 
anovich 1121 

cl/$ = 1.08076- 1.41042~“~ f0.26604~~‘~ 

-0.00016~~‘~+0.058266~“~ (57) 

the hexagonal resistance never exceeds the cylindrical 
resistance by more than 1% over the range of 
0 < PC < 0.6. In Fig. 7, we plot the fraction by which 
the resistance increases 

0.8 

0.6 

(58) 

FIG. 6. Resistance Jfu’ for three different arrays of disks heated by a uniform flux. 
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0.6 

I1 

area fraction of contact, n 

FIG. 7. Fractional increase in resistance, R, for a square array and a triangular array of disks for various 
cases of boundary condition. 

when the array type changes from a hexagon to a 

square or a triangle. While the resistance formula for 

a triangular array of isothermal disks is not available, 

we can expect that Q: > Sz: for IC # 0. Furthermore, 
we can also anticipate that Q” < C$ < Qyr. From Fig. 
7, we see that for small K, the effects of disk arrange- 
ment on the constriction resistance are negligible; 
however, they become significant when IC increases. In 
particular, we see that at K = 0.6, 0: N 12% while 
C& may be as high as 60%. 

As mentioned earlier, the temperature of the con- 
tact regions is uniform. To keep the problem tractable 
while at the same time reflecting this isothermal con- 
dition, the cylindrical cell model, which consists of an 
isothermal disk on top of a laterally insulated coaxial 

0 

0 

A 0 

0 

semi-infinite cylinder, has been widely used. Thus, it 
will be interesting to compare the cylindrical cell 
model to the periodic arrays considered in this study. 
To this end, we make use of the correlation obtained 
by Negus and Yovanovich [S, 121 

$1 = 1 - 1.40978~“~+0.34406~-“’ 

f0.043051~‘12+0.02271~7~’ (59) 

and plot the relative difference in resistance 

(60) 

for a square array and a hexagonal array of (iso- 
thermal) disks in Fig. 8. For 0 < K < 0.6, Ah is less 

I I I 1 I I 

0.1 0.2 0.3 0.4 0.5 0.6 

1 

area. fraction of contact, n 

RG. 8. Relative difference in resistance, A, between a square array or a hexagonal array and the cylindrical 
cell model. 
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than 3%, and for practical purposes, a hexagonal 
array and a cylindrical cell are interchangeable. 
Beyond K = 0.6, however, A, increases quite rapidly. 
In the case of a square array, we may incur significant 
errors if we model it with a cylindrical cell when 
ti >, 0.45. For example, &may exceed 30% at K = 0.7. 
These points are worth considering when one models 
multiple-contact problems with a single contact area 
on top of a circular cylinder. 

6. CONCLUSION 

We have demonstrated the importance of the 
boundary condition prescribed over the contact 
regions in the prediction of the constriction resistance. 
In general, the condition of uniform flux is not a 
good approximation to the boundary condition of 
isothermal contact regions. There may be cir- 
cumstances, however, under which the physical rep 
resentation calls for a uniform flux condition. While 
the equivalent isothermal flux predicts accurate results 
for small K, the errors incurred may become significant 
when K increases. We have also shown the effects of 
disk arrangement and con~ntration on the resistance. 
When the contact regions are far apart, the effects 
of disk arrangement are negligibIe. However, they 
become significant when K increases. This is true 
whether we impose the isothermal boundary con- 
dition or prescribe the equivalent isothermal flux or 
uniform flux over the contact areas. 

While the present model of periodic arrays of ident- 
ical contact regions is somewhat specialized compared 
to the situation of contact regions of random sizes in 
random spatial distribution, it has nevertheless 
yielded valuable information. The random problem is 
exceedingly complicated, and analytical treatment of 
it is yet to be developed. Recently, Das and Sadhal 
[19] have taken up the first step towards that goal. 
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RESISTANCE THERMIQUE DE CONSTRICTION: EFFETS DES CONDITIONS AUX 
LIMITES ET DES GEOMETRIES DU CONTACT 

R&n&---Le problkme de la r&sistance thermique de constriction permanente est mod&i& au moyen de 
plusieurs arrangement spatialement p&riodiques de disques circnlaires (r&ions de contact) sur la surface 
d’un solide semi-infini. On con&d&e trois cas de conditions aux limites du disque : flux uniforme, “flux 
isotherme Equivalent” et disques isothermes. Des expiriences analytiques pour la r&stance sont don&es 
en s&e puissance de rcLi2 od IC est la fraction de surface solide occup&e par les disques. Le comportement 
de la rksistance est ensuite ttudite en fonction de la condition aux limites du disque, de l’asrangement 

spatial et de la concentration. 
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EINFLUSS DER RANDBEDINGUNGEN UND DER KONTAKTGEOMETRIE AUF DEN 
THERMISCHEN KONTAKTWIDERSTAND 

Zusammenfassung-Das Problem des stationaren thermischen Kontaktwiderstands wird durch unter- 
schiedliche raumlich periodische Anordnungen van Kreisscheiben (Kontaktgebieten) an der Oberflache 
eines halbunendlichen Festkiirpers dargestellt. Drei unterschiedliche Randbedingungen werden betrachtet : 
Gleichfiirmige Warmestromdichte, “aquivalente isotherme Stromdichte” und der Fall isothermer Scheiben. 
Fur den Widerstand ergeben sich analytische Ausdriicke in Form van Potenzreihen mit dem Argument 
xl”, wobei ti den Anteil an der Festkorperoberflachc darstellt, der van den Scheiben eingenommen wird. 
Das Verhalten des Widerstands wird dann abhingig van den Randbedingungen an den Scheiben. von 

deren raumlicher Anordnung und Konzentrdtion untersucht. 

TEILJIOBOE COHPOTHBJIEHHE HPM CIATMH: 3@@EKTbI FPAHHrlHbIX YCJIOBHH H 
FEOMETPMH YYACTKOB KOHTAKTA 

AmtoTaq8m-C ~OMO4b~pa3~~~Hb~X~pOcTpaHCTBeHHO~epAOA~~eCK~XpaC~OEeHli~KpyrAbIXArtCKOB 

(yYaCTKOB KOHTaKTa) "a IIOBepXHOCTH IIOJIyOrpaHWIeHHOrO TBepAOrO TeAa MOAeAI%pyeTCX 3aAaqa CTa- 

~BOHapHOrOTe~AOBOrOCO~pOTBBAeHWR~p~C~aT~~.~~AeAyIoTCKTp~CAy~a~rpaHHYHbIXyCAOB~iiHa 

AHCKaX: OAHOpOAHbIii TeIIJIOBOii IIOTOK, LL3KBHBaZHTHbIfi Ei30TepMBWCKHi? nOTOK* H yCJIOBHe H3OTep- 

MHYHOCTB mc~~~.nonyqeHb~ afiannTwiecK8e BbIpawteHna aJInconpoTHsneHan B BnAecTeneHHoro pana 

no Kl”, me K-SacTb no~epx~oc~e TsepAoro Tena,3awiTan AwKahw PiccAeAyeTcsi xapaKTep COII~OTHB- 

,IeHUIl B 3aBACHMOCTA OTrpaHIiqHbIX yCJIOBHiiHaA&fCKaX,HX IIpOCTpaHCTl3eHHOrOpaCllOJIO~eHEi~ B KOH- 

ueHTpauwn. 


